

Bulgarian Academy of Sciences INSTITUTE OF ROBOTICS България, София 1113, ПК 79, ул. "Акад. Г.Бончев", Бл.2, Тел.(+359 2) 8732 614, (+359 2) 8723 571, Факс: (+359 2) 8703361 Почетен член на "Съвета на Европейската научна и културна общност"

Interactive System for Education in Modelling and Control of Bioprocesses

Velislava Lyubenova, Prof. DSc Maya Ignatova, Prof. Anastasiya Zlatkova, Ph.D. Denitsa Kristeva

> May 2022 Sibiu, Roumania

Fig. 1. Open source system InSEMCoBio

Setting up a fermentation process model and metaheuristic algorithm parameters in InSEMCoBio

urrent Step	Choose Fermetation Process		Logs		
Select Fermention Process	E coli MC4110 Eod batch	_		Record	
Select Model and Kinetics	E. con MC4110 Feu-balch	•	FP	E. coli MC4110 Fed-batch	
			Data	ECOIDAIASELXIS	
Coad Experimental Data	Choose Model and Kinetics				
Model Parameter Identification	Mass Balance Equations	Kinetic Models			
	✓ dX/dt = mu*X - F/V*X	Monod			
	✓ dS/dt = -1/Yxs*mu*X + (So - S)*F/V	🔿 Contoa			
	✓ dO2/dt = 1/Yox*mu*X + Kla*(O2* - O2) - F/V*O2	O Andrew			
	✓ dV/dt = F				
	Choose Algoithm	Set Model Load Data			
	Genetic Algorithm	▼			
	Genetic Algorithm Set Algorithm Parameters	•			
	Genetic Algorithm Set Algorithm MUTR 0.01 (0.001, 0.1)	•			
	Genetic Algorithm Set Algorithm Parameters MUTR 0.01 XOVR 0.7	•			
	Genetic Algorithm Set Algorithm Parameters MUTR 0.01 XOVR 0.7 0.1, 1.0) NIND 100	•			
	Genetic Algorithm Set Algorithm Parameters MUTR 0.01 (0.001, 0.1) XOVR 0.7 (0.1, 1.0) NIND 100 (1, 200)	•			
	Genetic Algorithm Set Algorithm Parameters MUTR 0.01 (0.001, 0.1) XOVR 0.7 (0.1, 1.0) NIND 100 (1, 200) MAXGEN 100 (1, 400)	•	_		
	Genetic Algorithm Set Algorithm Parameters MUTR 0.01 (0.001, 0.1) XOVR 0.7 (0.1, 1.0) NIND 100 (1, 200) MAXGEN 100 (1, 400) GGAP 0.9 (0.1, 1)	•			
	Genetic Algorithm Set Algorithm Parameters MUTR 0.01 (0.001, 0.1) XOVR 0.7 (0.1, 1.0) NIND 100 (1, 200) MAXGEN 100 (1, 400) GGAP 0.9 (0.1, 1)	•			
	Genetic Algorithm Set Algorithm Parameters MUTR 0.01 (0.001, 0.1) XOVR 0.7 (0.1, 1.0) NIND 100 (1, 200) MAXGEN 100 (1, 400) GGAP 0.9 (0.1, 1)	•			

Model Identification and Monitoring of E. Coli fed-batch cultivation for extracellular production of bacterial phytase

Oxidative-fermentative growth model on glucose

Oxidative-fermentative growth model on glucose and oxidative on acetate

Comparison of the coefficients of the best models for the three phases

	q _{smax}	k _s	k _{is}	q _{omax}	k _{os}	k _{io}	q _{acmax}	k _a	k _{ia}	k ₁	k ₂	k ₃	k ₄	k ₅	k ₆	k ₇
1 phase	4.19	0.19	5.54	1.1	2.15	0.088	0.082	1.17	-	3.69	0.557	0.187	4.6	1.41	2.66	0.45
2 phase	34.24	0.79	1.83	0.469	2.53	0.197	0.143	0.97	0.246	2.08	2.167	0.049	4.1	2.88	1.52	0.5
3 phase	77.11	0.47	12.3	2.1	3.29	0.134	0.0021	0.295	0.228	16.6	11.66	0.42	9.9	39.45	9.53	0.56

Scheme of the cascade software sensor of the process kinetics

On-line estimation of acetate production and consumption rates

Acetate production

$$\frac{d\hat{A}}{dt} = \hat{R}_{ap} - DA_m + w_1(A_m - \hat{A})$$
$$\frac{d\hat{R}_{ap}}{dt} = w_2(A_m - \hat{A})$$

Acetate consumption

$$\frac{d\hat{A}}{dt} = -\hat{R}_{ac} - DA_m + \lambda_1 (A_m - \hat{A})$$
$$\frac{d\hat{R}_{ac}}{dt} = -\lambda_2 (A_m - \hat{A})$$

On-line estimation of R_{1x}, R_{2x}, R_{3x} and X

$$\frac{d\hat{S}}{dt} = -k_1\hat{R}_{1X} - k_2\hat{R}_{ap}/k_3 - \frac{F}{V}S_m + \frac{F_{in,S}}{V}S_{in} + \lambda_1(S_m - \hat{S})$$

$$\frac{d\hat{R}_{1x}}{dt} = \lambda_2(S_m - \hat{S})$$

\widehat{R}_{2X}	$= \hat{R}_{ap}/k_3$	$\hat{\mu}_1 =$	$\widehat{R}_{1X}/\widehat{X}$

$$\hat{R}_{3X} = -\hat{R}_{ac}/k_4 \qquad \qquad \hat{\mu}_2 = \hat{R}_{2X}/\hat{X}$$

$$\frac{d\hat{X}}{dt} = \hat{R}_{1X} + \hat{R}_{2X} + \hat{R}_{3X} - D\hat{X} \qquad \hat{\mu}_3 = \hat{R}_{3X}/\hat{X}$$

Monitoring results– I phase

SS results: with red lines - inputs are experimental data, with blue lines - inputs are model data

Monitoring results-II phase

SS results: with red lines - inputs are experimental data, with green lines - inputs are model data

Monitoring results-III phase

Comparison of the coefficients of the best models for the three phases

	q _{smax}	k _s	k _{is}	q _{omax}	k _{os}	k _{io}	q _{acmax}	k _a	k _{ia}	k ₁	k ₂	k ₃	k ₄	k ₅	k ₆	k 7
1 phase	4.19	0.19	5.54	1.1	2.15	0.088	0.082	1.17	-	3.69	0.557	0.187	4.6	1.41	2.66	0.45
2 phase	34.24	0.79	1.83	0.469	2.53	0.197	0.143	0.97	0.246	2.08	2.167	0.049	4.1	2.88	1.52	0.5
3 phase	77.11	0.47	12.3	2.1	3.29	0.134	0.0021	0.295	0.228	16.6	11.66	0.42	9.9	39.45	9.53	0.56

A Methodology for Simultaneously State and Kinetics Observation of a Class Controllable Bioproceses

Oxidative growth on main carbon source, with specific growth rate μ_l :

$$S \xrightarrow{\mu_1} X$$

Fermentative growth on main carbon source, with specific growth rate μ_2 :

 $S \xrightarrow{\mu_2} X + P_{int}$

Oxidative growth on intermediate product, with specific growth rate μ_3 :

$$P_{int} \xrightarrow{\mu_3} X$$

As can be seen from the last reaction, the main source of carbon is depleted and biomass increases at the expense of the intermediate. Its concentration is usually low, leading to insignificant growth of biomass and low productivity of the target product. To avoid this reaction, the processes are controlled by feeding on a basic carbon source. This is done through two modes of control – fed-batch or continuous modes of cultivations.

For the considered class processes is accepted that transport dynamics, main carbon source and intermediate product are on-line measured.

A Methodology for Simultaneously State and Kinetics Observation of a Class Bioproceses

From what has been said so far, it is clear that the considered processes have two specific growth rates and total biomass.

The new idea is to present the biomass as consisting of two parts - the first one is connected with oxidative growth on main carbon source, X_1 , the second – with fermentative growth on main carbon source, X_2 . The full biomass concentration will be the sum of X_1 and X_2 : $X = X_1 + X_2$

The reaction scheme for the considered case is rewritten:

Oxidative growth on main carbon source, with specific growth rate $\mu_{\underline{l}}$: $S \xrightarrow{\mu_1} X_1$

Fermentative growth on main carbon source, with specific growth rate μ_2 : $S \xrightarrow{\mu_2}{\to} X_2 + P_{int}$ Estimator of oxidative growth of biomass X_1 with specific growth μ_1

$$\frac{dZ_1}{dt} = -\frac{F}{V}Z_1 + \frac{F}{V}S_{in}$$

$$\frac{d\hat{S}}{dt} = (S - Z_1)\hat{\mu}_1 - \frac{F}{V}(S - S_{in}) - (k_2)\hat{\mu}_2\hat{X}_2 + w_1(S - \hat{S})$$

$$\frac{d\hat{\mu}_1}{dt} = w_2(S - Z_1)(S - \hat{S})$$

$$\frac{dV}{dt} = F$$

Estimator of fermentative growth of biomass X_2 with specific growth μ_2

$$\frac{dZ_2}{dt} = -\frac{F}{V}Z_2$$

$$\frac{d\hat{P}_{int}}{dt} = (P_{int} - Z_2)\hat{\mu}_2 - \frac{F}{V}P_{int} + \gamma_1(P_{int} - \hat{P}_{int})$$

$$\frac{d\hat{\mu}_2}{dt} = \gamma_2(P_{int} - \hat{P}_{int})(P_{int} - Z_2)$$

$$\frac{dV}{dt} = F$$

Observers of biomasses X_1 *and* X_2

$$\frac{d}{dt} \begin{bmatrix} \hat{X}_1 \\ \hat{X}_2 \end{bmatrix} = \begin{bmatrix} \hat{\mu}_1 & 0 \\ 0 & \hat{\mu}_2 \end{bmatrix} \begin{bmatrix} \hat{X}_1 \\ \hat{X}_2 \end{bmatrix} - \frac{F}{V} \begin{bmatrix} \hat{X}_1 \\ \hat{X}_2 \end{bmatrix}$$
$$\frac{dV}{dt} = F$$
$$\hat{X} = \hat{X}_1 + \hat{X}_2$$

Observer of target product

$$\frac{d\widehat{Ph}}{dt} = \frac{k_{ph1}}{\hat{\mu}_1}\hat{X}_1 + \frac{k_{ph2}}{\hat{\mu}_2}\hat{X}_2 - \frac{F}{V}Ph$$

Two sets of experimental data

Estimates of \mu_2 and X_2

Observers of X and Ph

Model Identification, Monitoring and Control of Aspergillus Niger Fermentation for Gluconic Acid Production

Biochemical model and reaction scheme reduction

$$\frac{dX}{dt} = R_x;$$

$$\frac{dG}{dt} = -R_x - R_{GOT};$$

$$\frac{dGOT}{dt} = R_{GOT} - R_{GA};$$

$$\frac{dGA}{dt} = R_{GA};$$

$$\frac{dO}{dt} = -R_{GOT} + 0.5R_{H_2O_2} + K_L a(O_2^* - O_2);$$

$$\frac{dH_2O_2}{dt} = -R_{H_2O_2};$$

where

$$\begin{split} R_{H_2O_2} &= R_{GOT} - R_{H_2O_2}^{decom} \\ ; \\ R_x &= \mu_{\max} \, X \, \frac{k - X}{k} \\ ; \\ R_{GA} &= \mu_{GA} GA \, \frac{(k_{GA} - GA)}{k_{GA}} \\ ; \end{split}$$

$$\frac{dX}{dt} = R_x;$$

$$\frac{dG}{dt} = -R_x - R_{GA};$$

$$\frac{dGA}{dt} = R_{GA};$$

$$\frac{dO}{dt} = -0.5R_{GA} + K_L a(O_2^* - O_2),$$

Reducted model simulation

Linear regression form of the control model

$$\frac{dX_e}{dt}/dt = X_e G\theta_1 - DX_e$$

10

$$\frac{dG}{dt} = -X_e G \theta_2 - G O_2 \theta_3 - D(G - G_{in})$$

$$\frac{dO_2}{dt} = GO_2\theta_5 - DGA_e = -GO_2\theta_4 - DO_2 + K_L\alpha(O_2^* - O_2)$$

$$\frac{dGA_e}{dt} = GO_2\theta_5 - DGA_e$$

Continuus Control of Glucose concentration

First step
$$\frac{dG}{dt} = -X_e G \theta_2 - G O_2 \theta_3 - D(G - G_{in}))$$
Second step
$$\lambda(G^* - G) = dG/dt$$
Third step
$$D = \frac{-\lambda(G^* - G) - X_e G \theta_2 - G O_2 \theta_3}{G - G_{in}}$$

Fed-Batch Control of Glucose concentration

First step
$$\frac{dG}{dt} = -X_e G \theta_2 - G O_2 \theta_3 - \frac{F}{V} (G - G_{in})$$
Second step
$$\lambda(G^* - G) = dG/dt$$
Third step
$$F = \frac{G_{in}(-\lambda(G^* - G) - X_e G \theta_2 - G O_2 \theta_3)}{G - G_{in}}$$

dV/dt = F

Two approaches are considered. The first is to maintain some low value of the substrate (G) in the culture medium (0 or 3 g/l). Comparing the results obtained obtained until the eightieth hour of fermentation in sub-figures a, it found that a fed-batch was achieves higher control a concentration of the target product compared the to continuous control.

Continuus Control of Gluconic Acid Concentration

First step
$$\frac{dGA_e}{dt} = GO_2\theta_5 - DGA_e$$

Second step $\lambda(GA^* - GA_e) = dGA_e/dt$

Third step
$$D = \frac{-\lambda(GA^* - GA_e) + GO_2\theta_5}{GA_e}$$

Fed-Batch Control of Gluconic Acid Concentration

First step	$\frac{dGA_e}{dt} = GO_2\theta_5 - \frac{F}{G_{in}}GA_e$
Second step	$\lambda(GA^* - GA_e) = dGA_e/dt$
Third step	$F = \frac{V(\lambda(GA^* - GA_e) - GO_2\theta_5)}{GA_e}$ $dV/dt = F$

In the second one, a constant concentration of the target product (GA), which corresponds to its maximum productivity is maintained. It should be noted that the fed-batch process must be stopped when the volume reaches the maximum working volume (80 l), while during continuous mode of cultivation, the process may take longer. This does not give grounds for a definite conclusion under which cultivation regime will accumulate a larger amount of target product.

Conclusions

The algorithms developed in this study will be integrated into the system together with similar algorithms, developed for other food production processes. The choice of a process as well as the activation of the functions related to the identification, monitoring and control will be realized by the users through simple actions. In this way, users will be able to get acquainted with the results of modern algorithms without being familiar with the theory of their development, as well as with the software of their implementation. What has been said so far gives grounds to define the system under developing InSEMCoBio as interactive and user-friendly.

THANKS FOR YOUR ATTENTION